CALCULUS II Dr. Paul L. Bailey Homework 0420 Monday, April 19, 2021 Name:

Due Tuesday, April 20.

Proposition 1. (Geometric Series Test)

A geometric series is a series of the form $\sum ar^n$. The series converges if and only if |r| < 1. If |r| < 1, then

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

Note that if $\sum_{n=0}^{\infty} a_n$ converges and k is a positive integer, then $\sum_{n=k}^{\infty} a_n = \sum_{n=k}^{\infty} -\sum_{n=0}^{k-1} r^n$. **Problem 1.** Find the values of the following series.

(a)
$$\sum_{n=0}^{\infty} 2 \cdot (0.6)^n$$

(b)
$$\sum_{n=2}^{\infty} \frac{2^n + 3^n}{5^n}$$

Proposition 2. (p-Series Test) The series $\sum \frac{1}{n^p}$ converges if and only if p > 1.

Proposition 3. (Direct Comparison Test)

Suppose that $0 \leq a_n \leq b_n$ for all $n \in \mathbb{N}$. Then

- If $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\sum a_n$ diverges, then $\sum b_n$ diverges.

Problem 2. Write a complete sentence which uses the Direct Comparison Test to analyze whether or not the given series converges.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n+2^n}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n-n^2}$$

Proposition 4. (Ratio Test) Let $a_n \leq 0$ for all n. Let $\rho = \lim \frac{a_{n+1}}{a_n}$.

- If $\rho < 1$, then $\sum a_n$ converges.
- If $\rho > 1$, then $\sum a_n$ diverges.
- If $\rho = 1$, then the test is inconclusive.

Problem 3. Use the Ratio Test to determine if the following series converge. Write your findings in a complete sentence which justifies your conclusion.

(a)
$$\sum \frac{2^n \cdot 3^n}{n^n}$$

(b)
$$\sum \frac{3^n}{n!}$$

Problem 4. (Pick it) Determine if $\sum \frac{2^n \cdot 3^n}{n^n}$ converges. Justify your answer in complete sentences.